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SUMMARY

Stability analysis algorithms coupled with a robust Newton–Krylov steady-state iterative solver are used
to understand the behavior of the 2D model problem of thermal convection in a 8:1 di�erentially heated
cavity. Parameter continuation methods along with bifurcation and linear stability analysis are used to
study transition from steady to transient �ow as a function of Rayleigh number. To carry out this study
the steady-state form of the governing PDEs is discretized using a Galerkin=least-squares �nite element
formulation, and solved on parallel computers using a fully coupled Newton method and preconditioned
Krylov iterative linear solvers. Linear stability analysis employing a large-scale eigenvalue capability
is used to determine the stability of the steady solutions. The boundary between steady and time-
dependent �ows is determined by a Hopf bifurcation tracking capability that is used to directly track
the instability with respect to the aspect ratio of the system and with respect to mesh resolution. The
e�ect of upwinding stabilization terms in the �nite element formulation on the computed value of
critical Rayleigh number is investigated. The Hopf bifurcation signaling the onset of �ow is determined
to occur at a critical Rayleigh number of Ra=3:0604×105. Copyright ? 2002 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

This manuscript presents a computational stability analysis of the model problem of con-
�ned thermal convection �ow in an 8:1 enclosure. The model problem is fully described in
Reference [1]. The computational method employs a robust steady-state Newton–Krylov solver
for the non-linear systems, continuation methods for tracking solutions, and linear stability

∗ Correspondence to: A. G. Salinger, Parallel Computational Sciences Department, Sandia National Laboratories,
Albuquerque, New Mexico 87185-1111, U.S.A.

† E-mail: agsalin@sandia.gov
‡ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

Contract=grant sponsor: Department of Energy

Received 31 December 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised 1 July 2002



1060 A. G. SALINGER ET AL.

analysis capabilities. We will show how these capabilities provide a powerful tool for provid-
ing design information for systems with bifurcations. Using these techniques computationally
e�cient maps for stability regions for entire parameter spaces can be generated. However,
while the locus of transitional states can be determined with these methods, transient sim-
ulations are needed to study the details of the time-dependent supercritical response of the
system.
The power of applying bifurcation analysis algorithms to the study of �ow instabilities

has been well documented in numerous applications, most famously the Rayleigh–Benard
and Taylor–Couette systems. An excellent review of this area by Cii�e et al. [2] has re-
cently been published. The reader is referred to that work and Govaerts [3] for various
formulations of the bifurcation tracking algorithms. There is limited experience in apply-
ing these algorithms for large-scale PDE discretization that use approximate iterative linear
solvers.
The model problem of buoyancy driven �ow in a di�erentially heated cavity is described in

the �rst contribution to this issue by Christon et al. [1]. The �uid �ow and heat equations are
discretized using the MPSalsa unstructured grid �nite element code, which has been developed
for robust steady-state solves on distributed memory parallel computers [4–9]. This code uses a
Galerkin=least-squares discretization scheme, and includes a switch that can turn o� the SUPG
upwinding terms present in that formulation. The formulation is described in Section 2.1 and
steady-state solution method in Section 2.2.
A linear stability analysis capability has been implemented with MPSalsa by combin-

ing a Cayley transformation with the Arnoldi-based P ARPACK eigensolver [10, 11]. This
capability has been veri�ed and validated for numerous �uid �ow applications and has
demonstrated parallel scaling to millions of unknowns [12, 13], and is brie�y described in
Section 2.3. The library of continuation algorithms (LOCA) library [14] has also been in-
terfaced with the MPSalsa code for directly calculating bifurcations [15]. A Newton-based
algorithm in LOCA is used to converge directly to the instability, converging the parame-
ter value and solution simultaneously. The Hopf tracking algorithm is presented in detail in
Section 2.4.
In Section 3.1, the critical value of the Rayleigh number for the transition between stable

steady �ows and time-dependent �ows is found. The instability is located with the eigensolver,
and found to be a Hopf bifurcation signifying an oscillatory instability. Continuation of the
Hopf point with respect to a second parameter, the aspect ratio of the box, traces neutral
stability curves and provides insight into the structures of solution branches and the behavior
of the system. A mesh resolution study is performed in Section 3.2, using the Hopf algorithm
to �nd the instability on each mesh. The e�ect of the upwinding terms on the convergence
with mesh of the critical Rayleigh number is documented in Section 3.3.

2. NUMERICAL METHODS OVERVIEW

2.1. Galerkin=least-squares �nite element formulation

The governing transport PDEs describing �uid �ow and thermal energy transfer are presented
in Table I in residual form. In these equations, the unknown quantities are u; P, and T ;
these are, respectively, the �uid velocity vector, the hydrodynamic pressure, and temperature.
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Table I. Governing transport PDEs.

Momentum Rm= �
@u
@t
+ �(u · ∇u)− (∇ ·T)− �g

Total mass RP =
@�
@t
+ (∇ · �u)

Thermal energy RT = �ĈP

[
@T
@t
+ u · ∇T

]
+∇ · qc

Table II. Galerkin least-squares formulation of transport PDEs.

Momentum Fm; i =
∫
� �Rm; i d� +

∫
�e
��m(u · ∇�)Rm; i d�

Total mass FP =
∫
� �RP d� +

∫
�e
��m(∇� ·Rm) d�

Thermal energy FT =
∫
� �RT d� +

∫
�e
�Cp�T (u · ∇�)RT d�

The constitutive relations for a Newtonian stress tensor T and the Fourier law for the heat
�ux vector qc are used to close this system of equations.
The continuous problem, de�ned by the transport equations, is approximated by a Galerkin

least-squares (GLS) formulation [16–19]. This formulation allows for equal order interpolation
of pressure and velocity (without spurious pressure solutions), and for stabilization of highly
convected �ows. The resulting GLS equations are shown in Table II.
The GLS total mass residual equation in expanded form is given in the following equation.

The �rst term is the Galerkin term while the second pressure stabilization term is what allows
for equal order interpolation.

FP=
∫
�
�
(
@�
@t
+∇ · (�u)

)
d� +

∫
�e
��m∇� ·

[
�
@u
@t
+ �u · ∇u+∇P −∇ ·�− �g

]
d� (1)

The Newtonian stress tensor, T, is expanded to include the pressure, P, and the viscous stress
tensor term, �. This expansion exhibits the weak form of a Laplacian operator acting on
pressure ∫

�e
��m∇� · ∇P d� (2)

produced by the GLS formulation of the total mass conservation equation. The existence of this
well-conditioned matrix in the FE discretization of the GLS equations allows the solution of
the linear systems with a number of algebraic and domain decomposition-type preconditioners.
This is in contrast to other formulations, such as Galerkin methods using mixed interpolation,
that produce a zero block on the total mass continuity diagonal.
The second term in the GLS formulations of momentum and thermal energy are the up-

winding terms for stabilizing highly convective �ows. In Section 3.3 we will present results
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with these terms turned o�. This is done by setting �m and �T to zero in these two equations
without setting �m to zero in the total mass balance.

2.2. Overview of parallel Newton–Krylov implementation

In this section, a brief overview of the parallel numerical solution procedure for computing
steady states is presented in varying degrees of completeness. References are provided to more
complete sources on each of the topics.

2.2.1. Problem partitioning. Chaco [20], a general graph partitioning tool is used to parti-
tion the FE mesh into subdomains and make subdomain to processor assignments. Chaco
constructs partitions and subdomain mappings that have low communication volume, good
load balance, few message start-ups and only small amounts of network congestion. For the
results in this paper, multi-level methods with Kernighan–Lin improvement were used. For a
detailed description of parallel FE data structures and a discussion of the strong link between
partitioning quality and parallel e�ciency see Reference [21].

2.2.2. Newton–Krylov methods. A Newton–Krylov method [22] is an implementation of
Newton’s method in which a Krylov iterative solution technique is used to approximately
solve the linear systems that are generated at each step of Newton’s method. Speci�cally, to
solve the non-linear system F(x)= 0, the Krylov iterative solver is applied to determine an
approximate solution of the Newton equation

J(x)s=−F(x) (3)

where J(x) is the Jacobian matrix of F at the current iterate of x. A Newton–Krylov method
is usually implemented as an inexact Newton method. That is, one chooses a forcing term
�∈ [0; 1) and then applies a Krylov method until an iterate sk satis�es the inexact Newton
condition

‖F(x) + J(x)sk‖6 �‖F(x)‖ (4)

A more complete discussion of the details of this inexact Newton implementation can be
found in Reference [22].

2.2.3. Parallel preconditioned Krylov implementation. The linear subproblems generated from
the inexact Newton method are solved by preconditioned Krylov methods as implemented in
the Aztec solver library [7]. The parallel Krylov algorithms implemented in Aztec include
techniques such as the restarted generalized minimal residual [GMRES(k)] and transpose-free
quasi-minimal residual techniques for non-symmetric systems. It is well known that the overall
performance of Krylov methods can be substantially improved when one uses preconditioning.
The preconditioners that we use in our subsequent calculations are based on algebraic ad-

ditive Schwarz domain decomposition (DD) preconditioners [23] with variable overlapping
between subdomains. This method corresponds to projecting the equations onto a series of
overlapping subdomains and solving each subsystem. Since these subdomain solves are in-
dependent, they can be performed concurrently. Overlapping corresponds to increasing the
size of the locally de�ned subdomain to include additional levels of FE nodes outside of the
processor’s assigned nodes. Thus, a single level of overlapping uses only information from
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FE nodes that are connected by an edge (in the FE connectivity graph) that was cut by the
original subdomain partition. Successive levels of overlap now use this method recursively
by considering the previously overlapped points to now be assigned nodes to the expanded
subdomain.

2.3. Linear stability analysis algorithms

Having a fully assembled Jacobian matrix and robust linear solvers enables the use of stability
analysis tools. Details relating to the methods and parallel implementation of the linear stability
analysis algorithms can be found in References [12, 13, 24, 25]. The analysis begins at a given
steady-state solution point. A normal mode linear stability analysis produces a linearization of
the evolution equations around this steady-state solution and produces a generalized eigenvalue
problem of the form

Jz= �Bz (5)

where J is the Jacobian matrix, B is the mass matrix (i.e. coe�cient matrix of time derivative
terms), z is an eigenvector (generally complex), and � its associated eigenvalue (also com-
plex). A generalized Cayley transformation, which includes two adjustable real parameters, �
and �, is used to reformulate the generalized eigenvalue problem into an ordinary eigenvalue
problem for the transformed eigenvalues �:

(J − �B)−1(J − �B)z= �z (6)

A simple relationship exists between the transformed and original eigenvalues, �=(� − �)=
(� − �). Appropriate choices of � and � are made so that the eigenvalues of interest (those
� with largest real part) are mapped to large �. More details on appropriately choosing the
Cayley parameters are given in previous works [12, 13].
The eigenvalue problem de�ned in Equation (6) is solved using Arnoldi’s method with

a version of the P ARPACK software [10, 11] driven by software in the LOCA library for
performing the generalized Cayley transformation [14]. The approximate matrix inversions are
solved using the Aztec package, exactly the same as in the Newton iterations.

2.4. Hopf bifurcation tracking algorithm

A set of Newton algorithms for directly locating and tracking a bifurcation points has been
implemented as part of the LOCA library at Sandia National Labs [14]. These have been
developed to be relatively non-invasive to simplify implementation within an application code
and to work with codes that are based on iterative linear solvers.
Background on bifurcation theory can be found in several texts [26, 27]. Brie�y, bifurcations

are points on a steady-state solution branch where the real part of one or more eigenvalues
passes through zero as the branch is followed with respect to a key parameter. In the di�eren-
tially heated cavity application, we will see that steady solutions encounter a Hopf bifurcation
at a certain value of the Rayleigh number, referred to as the critical Rayleigh number. A Hopf
bifurcation is an instability where a steady solution becomes unstable to oscillatory modes,
and is characterized by a complex conjugate pair of eigenvalues that are purely imaginary
(i.e. �= ± !i). This de�nition, together with Equation (5), are used to de�ne a system of
equations that de�ne the Hopf bifurcation [2, 3, 28]. In real arithmetic, this leads to a system
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of 3Nx+2 unknowns (x; y; z; ! and p). Here, Nx is the length of x (and the order of J), while
y and z are vectors (of length Nx) containing the real and imaginary parts of the eigenvector,
z= y+ iz. The 3Nx + 2 equations specifying the Hopf bifurcation are then,

F = 0

Jy+!Bz = 0

Jz −!Bz = 0

� · y = 1

� · z = 0

(7)

The �rst vector equation requires a steady-state solution (where F(x; p) is the vector of
residuals), the next two vector equations specify that a purely imaginary eigenvalue exists,
and the last two scalar equations are used to set the length and phase of the eigenvector. The
unknown p is the critical parameter value, which is solved for as part of the solution, and is
assigned to the Rayleigh number for all calculations in this paper. The scaling vector � can
be almost any arbitrary vector and is �xed throughout the calculations.
These 3Nx+2 equations are solved using a Newton method. The linearized system used to

determine the solution updates is




J 0 0 0
@F
@p

@(Jy)
@x

+!
@(Bz)
@x

J !B Bz
@(Jy)
@p

+
@(!Bz)
@p

@(Jz)
@x

−! @(By)
@x

−!B J −By @(Jz)
@p

− @(!By)
@p

0 �t 0 0 0

0 0 �t 0 0







�x

�y

�z

�!

�p



=




−F
−Jy −!Bz
−Jz+!By
1− � · y
� · z



(8)

This derivation allows the mass matrix to depend on the solution vector and the parameter,
though these terms can often be neglected. Instead of forming and solving the 3Nx + 2 by
3Nx + 2 matrix system in Equation (8), a bordering algorithm is used at each Newton step.
This has the advantage of requiring fewer modi�cations to an existing code and of using less
memory. The new formulation requires two linear solves of the matrix J and three solves of
the complex matrix J+ i!B (shown below in expanded real form)

Ja = −F (9)

Jb = −@F
@p

(10)

[
J !B

−!B J

][
c
d

]
=

[
Bz
By

]
(11)
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[
J !B

−!B J

][
e
f

]
=



@(Jy)
@x

a+!
@(Bz)
@x

a

@(Jz)
@x

a −! @(By)
@x

a


 (12)

[
J !B

−!B J

][
g
h

]
=



@(Jy)
@p

+
@(Jy)
@x

b+!
@(Bz)
@p

+!
@(Bz)
@x

b

@(Jz)
@p

+
@(Jz)
@x

b−! @(By)
@p

−! @(By)
@x

b


 (13)

The temporary vectors named alphabetically a through h, which are computed by those linear
solves, are used to calculate the updates to the solution vector as follows:

�p=
(� · d)(1 + � · e)− (� · f)(� · c)
(� · h)(� · c)− (� · g)(� · d) (14)

�!=−
[
1 + � · e+ (� · g)�p

(� · c)
]

(15)

�x= a+ b�p (16)

�y=−y − e − g�p− c�! (17)

�z=−z − f − h�p− d�! (18)

The three complex matrix equations (shown in real form in Equations (11)–(13)) are solved
using a novel implementation for the solution of complex matrices with an existing real-valued
sparse iterative linear solver [29]. This step is the main numerical di�culty in solving for the
Hopf. Not only is this linear system double the order of Equation (3), but also the matrix
is singular at the Hopf point. Although this algorithm would break down if one attempted to
converge to the Hopf point to machine precision, our initial experience is that this algorithm
works well as long as the iterative linear solver tolerance is set to require high accuracy, such
as a 10−6 reduction in the linear residual.

3. APPLICATION OF SCALABLE STABILITY ANALYSIS ALGORITHMS

In this section, we will present results for applying the numerical methods presented in
Section 2 to the benchmark problem. In this section, we use the terms centro-symmetric
to describe eigenmodes that preserve the symmetry of the equations and boundary conditions,
as described in Reference [1], and symmetry-breaking to describe those that break the
centro-symmetry.

3.1. Results for 80×180 mesh
Results are shown for studying bifurcations in the thermal cavity problem. A mesh of 80×180
bilinear �nite elements, highly graded towards the walls, was used for these calculations.
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Figure 1. A plot showing the movement of the three leading eigenvalues as a function of the Rayleigh
number shows two Hopf bifurcations, the �rst occurring near Ra=3:61×105. The mesh of 58 644
unknowns requires 1–2min for a steady-state solve and about 30min for an eigenvalue calculation on 24
processors of the Sandia-Intel T�op (ASCI Red) machine. The curve labelled CS has centro-symmetric

eigenfunctions, and the curve labelled SB has symmetry-breaking eigenfunctions.

The problem of 58 644 unknowns was solved in parallel on 24 333 MHz Pentium processors
of the Sandia-Intel T�op machine (ASCI Red). A typical matrix �ll requires 0:35 s and
an iterative matrix solve (using a domain decomposition preconditioner with overlap and a
GMRES solver) about 15 s, and 3–6N iterations were su�cient to converge to a steady state
using a guess from a nearby parameter value, for a total of 1–2 min. Figure 1 shows the
evolution of the three rightmost eigenvalues as a function of the Rayleigh number. Two Hopf
bifurcations are detected, the �rst is a centro-symmetric mode near Ra=3:61×105 and a
second symmetry-breaking mode near Ra=3:86×105. Because of the large imaginary parts,
an Arnoldi space of 180 was needed to converge the �rst several eigenvalues using Cayley
parameters of �=2000 and �=5000. An eigensolve required about 30min. While we believe
the non-linear solver and the eigensolver are converged to 3 or more digits, the calculation
is not converged with mesh spacing. This will be addressed in Section 3.2.
Three streamline plots are shown in Figure 2: the solution at the bifurcation point, one of

the eigenvectors (y) for the centro-symmetric instability at this point, and one of the eigen-
vectors for the symmetry-breaking instability at the second Hopf bifurcation. The symmetry
of the solutions is diagnosed visually by observing that symmetric solutions having zero ve-
locity at the center of the cavity while the symmetry-breaking eigenmodes have a non-zero
streamfunction contour passing through this point.
The Hopf bifurcation tracking algorithm was run using results from the eigenvalue cal-

culation as initial guesses for y; z, and !. The results of tracking the Hopf bifurcation
with respect to the aspect ratio of the cavity are shown in Figure 3. Calculating a Hopf
bifurcation starting from a converged solution at a di�erent parameter value required about
30 min. Once started, the curves were traced automatically. The two bifurcations seen in
Figure 1 were initially tracked, and it was found that (for this mesh) the centro-symmetric
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Figure 2. Three streamline plots are shown: the �rst is the solution at the �rst Hopf bifurcation at
Ra=3:61×105, the second is the centro-symmetric eigenfunction at that point, and the third is the

symmetry-breaking eigenfunction at the second Hopf bifurcation at Ra=3:86×105.

bifurcation (labelled CS(8)) always occurs at lower parameter values than the symmetry-
breaking (labelled SB(8)). Eigenvalue calculations at aspect ratios of 7.0 and 9.0 revealed
that other modes had overtaken these modes. Tracking the locus of neutral stability points
of these two symmetry-breaking modes (labelled SB(7) and SB(9)) show how the leading
destabilizing mode transitions from the SB(7) to the CS(8) to the SB(9) mode. The two
transition points (near aspect ratios of 7.4 and 8.6) are codimension 2 bifurcation points
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Figure 3. Neutral stability curves showing the locus of Hopf bifurcations for a range of aspect ratios,
calculated directly using the Hopf tracking algorithm. The destabilizing mode at an aspect ratio of 8.0
is no longer the destabilizing mode at aspect ratios below 7.4 or above 9.6. The curve labelled CS has
centro-symmetric eigenfunctions, and the curve labelled SB has symmetry-breaking eigenfunctions.

where two Hopf bifurcations occur simultaneously. Much more complicated dynamics would
be expected if supercritical Rayleigh numbers were studied at these aspect ratios.

3.2. Mesh resolution study

In the previous section, we determined the critical Rayleigh number to be Ra=3:61×105
for the mesh of 80×180 elements (corresponding to 58 644 unknowns) with the GLS dis-
cretization. The destabilizing mode was found to be centro-symmetric. The results of a mesh
resolution study to see how the critical Rayleigh number for this mode depends on mesh reso-
lution is shown in Figure 4. Seven predictions are shown, two for coarser meshes, and four at
�ner meshes then the previous results. Since the meshes are not uniform, but graded towards
the edges, we chose a measure of the mesh spacing h=1=(

√
N ), where N is the number of

total unknowns for that given mesh. For the mesh re�nement study, no eigenvalue calculations
were needed, just the Hopf tracking algorithm. For each successively �ner mesh, the solution
vector and the two eigenvectors were interpolated from the previous mesh and used as initial
guesses (along with the previous values for the Rayleigh number and frequency). In this way,
the critical Rayleigh number for this mode was directly located in 4–5 N iterations for each
new mesh. This is a great savings in both compute and user time over locating the bifurcation
points with just an eigenvalue approximation capability.
The number of unknowns for the seven meshes were 23 940, 43 508, 58 644, 102 212,

178 020, 302 036, and 708 292. The critical Rayleigh number on the �nest mesh of 256×688
elements was found to be Ra=3:156×105. This calculation required four Newton iterations to
converge and took 3:5 h on 160 processors. The convergence of the critical Rayleigh number
with mesh is shown to be second order in Figure 5. Here, the error in the critical Rayleigh
number (using Ra=3:115×105 as the reference solution, as computed in Section 3.3) is
plotted against the mesh spacing on a log–log plot and found to have a slope of 2.
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Figure 4. Convergence study of the location of the critical Rayleigh number for the Hopf bifur-
cation with mesh resolution. The x-axis is an estimate of a mesh spacing, h. Starting with the
third coarsest mesh, which had a critical Ra=3:61×105 and has solutions shown in Figure 2, the
results on the �nal meshes were calculated directly using the Hopf tracking algorithm using the
results of a mesh interpolation utility. The �nest mesh has 708 292 unknowns and has a critical

Rayleigh number of Ra=3:156×105.

Figure 5. The same mesh convergence data for the critical Rayleigh number is plotted on a log–log
plot to demonstrate the second-order convergence rate. The reference solution of Ra=3:115×105

is taken from the results described in Section 3.3.

To verify the results of the tracking algorithm, an eigenvalue approximation run was per-
formed at these conditions. Using an Arnoldi space of size 150 and Cayley parameters of
�=−�=1000, the largest 27 eigenvalues were converged within the speci�ed tolerance in
less then 4 h on 128 processors. A plot of the computed eigen spectrum together with data
for the �ve rightmost pairs is shown in Figure 6. While there is a purely imaginary pair of
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Figure 6. Part of the eigen spectrum for the �nest mesh at Ra=3:156×105, where the Hopf bifur-
cation tracking algorithm located the instability. In addition to the expected pair of eigenvalues on
the imaginary axis, we can see that another complex conjugate pair of eigenvalues is in the right

half-plane. The �ve rightmost eigenpairs are tabulated.

eigenvalues as expected, the results show a complex conjugate pair of eigenvalues with posi-
tive real part. This results shows that, as the mesh was re�ned, the symmetry-breaking mode
overtook the centro-symmetric mode as the �rst destabilizing mode. This is not a failing of
the Hopf tracking algorithm, which successfully converged to a solution based on the initial
guess it was given, yet points to the need to have both the bifurcation tracking and the com-
plementary eigenvalue approximation capabilities. The Hopf algorithm was relaunched using
these unstable modes for the y and z vectors, and converged to a critical Rayleigh number
of Ra=3:115×105.

3.3. E�ects of upwinding

All of the previous results were obtained with the GLS formulation, which includes the
convective stabilization terms that are essentially equivalent to the streamwise upwinding
Petrov–Galerkin (SUPG) method. To study the e�ect of the upwinding terms on the prediction
of the instability for this highly convective �ow, we turned o� the upwinding terms in our
formulation. This results in a pressure stabilized Galerkin (PSG) formulation for which we
recalculate the critical Rayleigh number. For the �nest mesh, there was no signi�cant di�erence
in the number of iterations needed to solve the linear sub-problems for the two formulations.
A comparison of the critical Rayleigh number for the three �nest meshes for both the GLS
solution (with SUPG terms) and the PSPG formulation (without upwinding) are shown in
Table III. In addition, the extrapolated value of the critical Rayleigh number as h → 0 is
shown in the �nal row of the table. This value is obtained using the �rst and third rows,
where the mesh has been doubled in each direction, and assuming O(h2) convergence for
both schemes.
From the extrapolated values, there is strong evidence that both formulations are converging

to the same prediction of the critical Rayleigh number. This con�rms the expectation that the
e�ect of the upwinding terms disappears as h → 0. The prediction of the PSG formulation
is found to be much more mesh insensitive than the upwinded solution. From these results,
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Table III. Location of the �rst critical Hopf bifurcation as a function of mesh
resolution for the GLS formulation, which includes the SUPG upwinding terms,
and the PSPG formulation, where upwinding terms are NOT included in for-
mulation. The third mesh has double the elements in each direction of the �rst
mesh, so an O(h2) extrapolation of the critical value is shown in the �nal row.

# of Unknowns Racr SUPG Racr PSPG

178 020 3:2637×105∗ 3:0768×105
302 036 3:1833×105∗ 3:0678×105
708 292 3:1153×105 3:0645×105
Extrapolation 3:0658×105 3:0604×105
∗These numbers were calculated after the conference in June 2001 to better compare
the convergence of the same mode with two di�erent formulations.

our best estimate for the critical Rayleigh number is the extrapolated value from the PSPG
formulation: Ra=3:0604×105.
The period of an oscillatory solution starting at this point is given by (2	)=!, which (in

the time units given in the problem description) is T =3:67. The stability analysis algorithms
in LOCA do not presently include the capability of determining whether the bifurcation is
subcritical or supercritical, which is to say, whether a stable branch of oscillating solutions
emanates from the bifurcation point, though such algorithms are being developed [30]. The
second mode to go unstable is the centro-symmetric mode, which was found on the �nest
mesh with the PSPG formulation to bifurcate at Ra=3:115×105 with a period of T =3:39.
This is the same mode that was tracked in the initial mesh resolution study in Section 3.2, and
so this value of the critical Rayleigh number was used as the reference value in determining
order of convergence.

4. SUMMARY AND CONCLUSIONS

Stability analysis algorithms have been used to locate the Hopf bifurcations where steady �ow
of a Boussinesq �uid in an 8:1 thermal cavity goes unstable. The set of four coupled PDEs
are discretized using a Galerkin=least-squares formulation for unstructured grids on parallel
computers as implemented in the MPSalsa code. A fully coupled inexact Newton method
together with a preconditioned Krylov iterative solver from the Aztec package are used to
solve directly for steady-state solutions on a parallel computer. An eigenvalue approximation
capability, based on the Cayley transformation and the ARPACK library, and which has been
implemented to work with iterative linear solvers, is used to initially locate the bifurcations.
A Hopf tracking algorithm form the LOCA library is then used, for one mesh, to track out
the neutral stability curves as a function of the aspect ratio. Two double Hopf bifurcations
are found to exist nearby in parameter space.
The Hopf tracking algorithm is also used to perform mesh resolution studies on the critical

Rayleigh number without the need of searching for the bifurcations with the eigensolver. We
�nd that the GLS formulation, which includes SUPG-type upwinding terms, would require a
�ner mesh to predict the instability to the same accuracy as the PSG formulation, which does
not include upwinding terms.
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Our best prediction for the critical Rayleigh number for the onset of unsteady convection
is Ra=3:0604×105. Although our linearized system about the steady-state predicts a period
of 3.67, our methods do not speak to the stability of the oscillatory branch that starts at this
critical Rayleigh number or to the existence of any stable periodic orbits.
The methods described here, which use the MPSalsa, Aztec, ARPACK, and LOCA libraries,

have been implemented to be scalable on distributed memory parallel computers and to work
with unstructured grid discretizations in two or three dimensions. The same code can be used
to aid in the design of systems with chemical reactions, variable physical properties, and with
complex geometries.
We believe that stability analysis algorithms are the appropriate tool for locating the pa-

rameter value for the onset of an instability, and tracking how the instability is dependent
on a second system parameter. This is the crucial information needed when trying to design
a system to operate on a given side of the instability (usually the steady side). When the
dynamical behavior of an unsteady system is desired, an e�cient and accurate transient ca-
pability is the appropriate tool, though having a stability analysis capability can be valuable
in that case as well, to help target the transient runs.
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